Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions	

An Intrusion Tolerant Threshold Cryptographic System

Kamran Riaz Khan <krkhan@inspirated.com>

March 2, 2010

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals	Deliverables	Related Work	Questions
			0 00 00			
			00			

Outline

1 Problem Statement

- Background
- Fail Well Systems
- The Basic Model
- 2 Proposed Solution
 - (k, n) Threshold Scheme
- 3 Project Goals
 - Statement
 - Approaches
 - Implementation
- 4 Deliverables
- 5 Related Work
- 6 References
- 7 Questions

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement •00000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	nd					

Alice calculates:

$$\mathbf{c} := \mathbf{E}(\mathbf{K}, \mathbf{m}) \tag{1}$$

- Alice sends c to Bob
- Bob calculates:

$$\mathfrak{m} := \mathsf{D}(\mathsf{K}, \mathfrak{c}) \tag{2}$$

How to communicate K?

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement ●00000 ○	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

Alice calculates:

$$\mathbf{c} := \mathsf{E}(\mathsf{K}, \mathsf{m}) \tag{1}$$

- Alice sends c to Bob
- Bob calculates:

$$\mathfrak{m} := \mathcal{D}(\mathsf{K}, \mathsf{c}) \tag{2}$$

How to communicate K?

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement •00000 °	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

Alice calculates:

$$\mathbf{c} := \mathsf{E}(\mathsf{K}, \mathsf{m}) \tag{1}$$

Alice sends c to Bob

Bob calculates:

$$\mathfrak{n} := \mathsf{D}(\mathsf{K}, \mathsf{c})$$

■ How to communicate K?

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement •00000 °	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

Alice calculates:

$$\mathbf{c} := \mathsf{E}(\mathsf{K}, \mathsf{m}) \tag{1}$$

- Alice sends c to Bob
- Bob calculates:

$$\mathfrak{m} := \mathsf{D}(\mathsf{K}, \mathfrak{c}) \tag{2}$$

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement •00000 °	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

Alice calculates:

$$\mathbf{c} := \mathsf{E}(\mathsf{K}, \mathsf{m}) \tag{1}$$

- Alice sends c to Bob
- Bob calculates:

$$\mathfrak{m} := \mathsf{D}(\mathsf{K}, \mathfrak{c}) \tag{2}$$

How to communicate K?

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 0 0 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

Bank generates a pair of keys (S_{bank}, P_{bank}) such that

 $D(S_{bank}, E(P_{bank}, m)) = m$ (3)

for all values of m

P_{bank} is published

Kamran Riaz Khan <krkhan@inspirated.com> An Intrusion Tolerant Threshold Cryptographic System

Outline	Problem Statement 0 0 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

Bank generates a pair of keys (S_{bank}, P_{bank}) such that

$$D(S_{bank}, E(P_{bank}, m)) = m$$
(3)

for all values of m

P_{bank} is published

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 0 0 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

Bank generates a pair of keys (S_{bank}, P_{bank}) such that

$$D(S_{bank}, E(P_{bank}, m)) = m$$
(3)

for all values of m

P_{bank} is published

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

■ For credit card number m, client calculates:

$$\mathbf{c} := \mathbf{E}(\mathbf{P}_{bank}, \mathbf{m}) \tag{4}$$

Client sends c to bank

Bank receives c and calculates:

$$\mathfrak{m} := \mathsf{D}(\mathsf{S}_{\mathsf{bank}}, \mathsf{c}) \tag{5}$$

Equation (3) ensures m is recovered from c *

*N. Ferguson and B. Schneier, Practical Cryptography. New York, NY, USA: John Wiley & Sons, Inc., 2003 [1]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

■ For credit card number m, client calculates:

$$\mathbf{c} := \mathsf{E}(\mathsf{P}_{bank}, \mathsf{m}) \tag{4}$$

Client sends c to bank

Bank receives c and calculates:

$$m := D(S_{bank}, c) \tag{5}$$

Equation (3) ensures m is recovered from c *

*N. Ferguson and B. Schneier, *Practical Cryptography*. New York, NY, USA: John Wiley & Sons, Inc., 2003 [1]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

■ For credit card number m, client calculates:

$$\mathbf{c} := \mathsf{E}(\mathsf{P}_{bank}, \mathsf{m}) \tag{4}$$

Client sends c to bank

Bank receives c and calculates:

$$\mathfrak{m} := \mathcal{D}(\mathcal{S}_{bank}, \mathfrak{c}) \tag{5}$$

Equation (3) ensures m is recovered from c *

*N. Ferguson and B. Schneier, Practical Cryptography. New York, NY, USA: John Wiley & Sons, Inc., 2003 [1]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

■ For credit card number m, client calculates:

$$c := E(P_{bank}, m) \tag{4}$$

Client sends c to bank

Bank receives c and calculates:

$$m := D(S_{bank}, c) \tag{5}$$

Equation (3) ensures m is recovered from c *

N. Ferguson and B. Schneier*, Practical Cryptography*. New York, NY, USA: John Wiley & Sons, Inc., 2003 [1]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

■ For credit card number m, client calculates:

$$c := E(P_{bank}, m) \tag{4}$$

Client sends c to bank

Bank receives c and calculates:

$$\mathfrak{m} := \mathsf{D}(\mathsf{S}_{\mathsf{bank}}, \mathsf{c}) \tag{5}$$

Equation (3) ensures m is recovered from c *

*N. Ferguson and B. Schneier, *Practical Cryptography*. New York, NY, USA: John Wiley & Sons, Inc., 2003 [1]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	nd					

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgroun	nd					

■ Alice buys Padlock_{Alice} and Key_{Alice}

- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline Problem Statement	Proposed Solution 00000	Project Goals 0 00 00	Deliverables	Related Work	References	Questions
Background						

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline Problem Statement	Proposed Solution 00000	Project Goals 0 00 00	Deliverables	Related Work	References	Questions
Background						

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline Problem Statement	Proposed Solution 00000	Project Goals 0 00 00	Deliverables	Related Work	References	Questions
Background						

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline Problem Statement	Proposed Solution	Project Goals 0 00 00	Deliverables	Related Work	Questions
Background					

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline Problem Statement	Proposed Solution 00000	Project Goals 0 00 00	Deliverables	Related Work	References	Questions
Background						

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Kamran Riaz Khan <krkhan@inspirated.com>

Outline Problem Statement	Proposed Solution	Project Goals 0 00 00	Deliverables	Related Work	Questions
Background					

- Alice buys Padlock_{Alice} and Key_{Alice}
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Alice}
- Alice sends the box to Bob
- Alice gives Bob the Key_{Alice} through some other channel
- Bob receives the box
- Bob unlocks the box using Key_{Alice}

Outline	Problem Statement 0000●0 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	nd					

Bob buys Padlock_{Bob} and Key_{Bob}

- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline Problem Statem	ent Proposed Solution 00000	Project Goals o oo oo	Deliverables	Related Work	Questions
Background					

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline Problem Statem	ent Proposed Solution 00000	Project Goals o oo oo	Deliverables	Related Work	Questions
Background					

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline Problem Statement ○ ○ ○	Proposed Solution 00000	Project Goals o oo oo	Deliverables	Related Work	Questions
Background					

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline Problem Statement 000000 0 0	o oo oo		
Background			

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline Problem Statement ○ ○ ○	Proposed Solution 00000	Project Goals o oo oo	Deliverables	Related Work	Questions
Background					

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Kamran Riaz Khan <krkhan@inspirated.com>

Outline Problem Statement ○ ○ ○	Proposed Solution 00000	Project Goals o oo oo	Deliverables	Related Work	Questions
Background					

- Bob buys Padlock_{Bob} and Key_{Bob}
- Bob sends Padlock_{Bob} to Alice
- Alice puts the secret message in a box
- Alice locks the box using Padlock_{Bob}
- Alice sends the box to Bob
- Bob receives the box
- Bob unlocks the box using Key_{Bob}

Outline	Problem Statement ○ ○ ○	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

- S_{bank} is never *communicated*
- Single point of failure

Kamran Riaz Khan <krkhan@inspirated.com> An Intrusion Tolerant Threshold Cryptographic System

Outline	Problem Statement ○ ○ ○	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ind					

■ S_{bank} is never *communicated*

Single point of failure

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
Backgrou	ınd					

- S_{bank} is never *communicated*
- Single point of failure

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions	
Fail Well	Systems						

The Most Criticial Aspect of any Security Measure ⁺

- Not how well it works
- But how well it fails
 - INTEGRITY: Secret key can be lost
 - SECRECY: Secret key can be compromised

⁺C. C. Mann, "Homeland insecurity," *The Atlantic Monthly*, vol. 290, pp. 81–102, September 2002 [2]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions	
Fail Well	Systems						

The Most Criticial Aspect of any Security Measure⁺

Not how well it works

But how well it fails

- INTEGRITY: Secret key can be lost
- SECRECY: Secret key can be compromised

⁺C. C. Mann, "Homeland insecurity," *The Atlantic Monthly*, vol. 290, pp. 81–102, September 2002 [2]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions	
Fail Well	Systems						

The Most Criticial Aspect of any Security Measure⁺

Not how well it works

But how well it fails

- INTEGRITY: Secret key can be lost
- SECRECY: Secret key can be compromised

⁺C. C. Mann, "Homeland insecurity," *The Atlantic Monthly*, vol. 290, pp. 81–102, September 2002 [2]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals 0 00 00	Deliverables	Related Work	Questions	
Fail Well	Systems						

The Most Criticial Aspect of any Security Measure⁺

- Not how well it works
- But how well it fails
 - INTEGRITY: Secret key can be lost
 - SECRECY: Secret key can be compromised

⁺C. C. Mann, "Homeland insecurity," *The Atlantic Monthly*, vol. 290, pp. 81–102, September 2002 [2]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals 0 00 00	Deliverables	Related Work	Questions
Fail Well	Systems					

The Most Criticial Aspect of any Security Measure ⁺

- Not how well it works
- But how well it fails
 - INTEGRITY: Secret key can be lost
 - SECRECY: Secret key can be compromised

⁺C. C. Mann, "Homeland insecurity," *The Atlantic Monthly*, vol. 290, pp. 81–102, September 2002 [2]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	Model					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Issue: Destruction of any one piece could erase the secret

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	Model					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Issue: Destruction of any one piece could erase the secret

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	: Model					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Issue: Destruction of any one piece could erase the secret

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	Model					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Issue: Destruction of any one piece could erase the secret

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	Model					

Data Integrity

- Solution: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Issue: Destruction of any one piece could erase the secret

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	Model					

Data Integrity

- Solution: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary
- Data Secrecy
 - SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
 - Issue: Destruction of any one piece could erase the secret

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
The Basic	Model					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Issue: Any of the n parties could disclose the secret to an adversary
- Data Secrecy
 - SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
 - Issue: Destruction of any one piece could erase the secret

Kamran Riaz Khan <krkhan@inspirated.com>

[‡]P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997 [3]

Outline	Problem Statement 000000 0 0	Proposed Solution ●0000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Tł	nreshold Scheme					

Divide D into n pieces D₁, ..., D_n in such a way that:

- Knowledge of any k or more D_i pieces makes D easily computable
- Knowledge of any k − 1 or fewer D_i pieces leaves D completely undetermined

Example: (3, n) threshold scheme for signatures on a check

An unfaithful executive must have at least two accomplices in order to forge a valid signature

[§]A. Shamir, "How to share a secret," *Communications of the Association for Computing Machinery*, vol. 22, pp. 612–613, Nov. 1979 [4]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution ●0000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Tł	nreshold Scheme					

Divide D into n pieces D₁, ..., D_n in such a way that:

- Knowledge of any k or more D_i pieces makes D easily computable
- Knowledge of any k − 1 or fewer D_i pieces leaves D completely undetermined

Example: (3, n) threshold scheme for signatures on a check

An unfaithful executive must have at least two accomplices in order to forge a valid signature

[§]A. Shamir, "How to share a secret," *Communications of the Association for Computing Machinery*, vol. 22, pp. 612–613, Nov. 1979 [4]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution ●0000	Project Goals 0 00 00	Deliverables	Related Work	Questions
(k,n) Th	nreshold Scheme					

Divide D into n pieces D₁, ..., D_n in such a way that:

- Knowledge of any k or more D_i pieces makes D easily computable
- Knowledge of any k 1 or fewer D_i pieces leaves D completely undetermined

Example: (3, n) threshold scheme for signatures on a check

An unfaithful executive must have at least two accomplices in order to forge a valid signature

[§]A. Shamir, "How to share a secret," *Communications of the Association for Computing Machinery*, vol. 22, pp. 612–613, Nov. 1979 [4]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution ●0000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Th	nreshold Scheme					

- Divide D into n pieces D₁, ..., D_n in such a way that:
 - Knowledge of any k or more D_i pieces makes D easily computable
 - Knowledge of any k 1 or fewer D_i pieces leaves D completely undetermined

Example: (3, n) threshold scheme for signatures on a check
 An unfaithful executive must have at least two accomplices in order to forge a valid signature

[§]A. Shamir, "How to share a secret," *Communications of the Association for Computing Machinery*, vol. 22, pp. 612–613, Nov. 1979 [4]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution ●0000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Th	nreshold Scheme					

- Divide D into n pieces D₁, ..., D_n in such a way that:
 - Knowledge of any k or more D_i pieces makes D easily computable
 - Knowledge of any k 1 or fewer D_i pieces leaves D completely undetermined

Example: (3, n) threshold scheme for signatures on a check

 An unfaithful executive must have at least two accomplices in order to forge a valid signature

[§]A. Shamir, "How to share a secret," *Communications of the Association for Computing Machinery*, vol. 22, pp. 612–613, Nov. 1979 [4]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution ●0000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Th	nreshold Scheme					

- Divide D into n pieces D₁, ..., D_n in such a way that:
 - Knowledge of any k or more D_i pieces makes D easily computable
 - Knowledge of any k 1 or fewer D_i pieces leaves D completely undetermined
- Example: (3, n) threshold scheme for signatures on a check
 - An unfaithful executive must have at least two accomplices in order to forge a valid signature

[§]A. Shamir, "How to share a secret," *Communications of the Association for Computing Machinery*, vol. 22, pp. 612–613, Nov. 1979 [4]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals 0 00 00	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Threshold Values: (n, n)

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Threshold Values: (n, n)

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Threshold Values: (n, n)

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Threshold Values: (n, n)

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)

Data Secrecy

- SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
- Threshold Values: (n, n)

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)
- Data Secrecy
 - SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
 - THRESHOLD VALUES: (n, n)

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0●000	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Data Integrity

- SOLUTION: Duplication of data among n parties would prevent coalitions of up to n − 1 parties from erasing the secret
- Threshold Values: (1, n)
- Data Secrecy
 - SOLUTION: Splitting the data into n pieces would prevent full-disclosure from any single party
 - Threshold Values: (n, n)

	oblem Statement	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Thresh	old Scheme					

By properly choosing k and n parameters we can give:

- Any sufficiently large majority (k) the authority to do some action
- Any sufficiently large minority (n − k + 1) the power to block it

	roblem Statement 00000	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Thresh	hold Scheme					

By properly choosing k and n parameters we can give:

- Any sufficiently large majority (k) the authority to do some action
- Any sufficiently large minority (n − k + 1) the power to block it

(k, n) Threshold Scheme	Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions
	(k,n) Th	reshold Scheme					

By properly choosing k and n parameters we can give:

- Any sufficiently large majority (k) the authority to do some action
- Any sufficiently large minority (n − k + 1) the power to block it

Outline	Problem Statement 000000 0 0	Proposed Solution 000●0	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Th	nreshold Scheme					

By using a (k, n) threshold scheme with n = 2k - 1:

- We can recover the original key even when [ⁿ/₂] = k − 1 of the n pieces are destroyed.
- Opponents cannot reconstruct the key even when a security breach exposes [ⁿ/₂] = k − 1 of the remaining k pieces.

Outline	Problem Statement 000000 0 0	Proposed Solution 000●0	Project Goals 0 00 00	Deliverables	Related Work	Questions
(k, n) Tl	hreshold Scheme					

By using a (k, n) threshold scheme with n = 2k - 1:

■ We can recover the original key even when [ⁿ/₂] = k − 1 of the n pieces are destroyed.

■ Opponents cannot reconstruct the key even when a security breach exposes [ⁿ/₂] = k − 1 of the remaining k pieces.

Outline	Problem Statement 000000 0 0	Proposed Solution 000●0	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Th	nreshold Scheme					

By using a (k, n) threshold scheme with n = 2k - 1:

- We can recover the original key even when [ⁿ/₂] = k − 1 of the n pieces are destroyed.
- Opponents cannot reconstruct the key even when a security breach exposes [ⁿ/₂] = k − 1 of the remaining k pieces.

Outline	Problem Statement 000000 0 0	Proposed Solution 0000●	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Inconvenience:

- (1,9) is convenient but easy to misuse
- (5,9) is safe but inconvenient

Kamran Riaz Khan <krkhan@inspirated.com> An Intrusion Tolerant Threshold Cryptographic System

Outline	Problem Statement 000000 0 0	Proposed Solution 0000●	Project Goals o oo oo	Deliverables	Related Work	Questions
(k, n) Th	nreshold Scheme					

Inconvenience:

- (1,9) is convenient but easy to misuse
- (5,9) is safe but inconvenient

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution 0000●	Project Goals o oo oo	Deliverables	Related Work	Questions
(k,n) Tł	nreshold Scheme					

Inconvenience:

- (1,9) is convenient but easy to misuse
- (5,9) is safe but inconvenient

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0	Proposed Solution 00000	Project Goals • °° °°	Deliverables	Related Work	Questions
Statement						

Threshold Cryptography Software

Create software for implementing a (k, n) threshold scheme in cryptographic aspects of a Certificate Authority and Web Server

Outline Problem Staten 000000 0 0	ent Proposed Solution 00000	Project Goals ● ○○ ○○	Deliverables	Related Work	Questions
Statement					

Threshold Cryptography Software

Create software for implementing a (k, n) threshold scheme in cryptographic aspects of a Certificate Authority and Web Server

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ●○ ○○	Deliverables	Related Work	Questions	
Approach	nes						

Single-Secret Sharing

- LaGrange Interpolation [4]
- Intersecting Hyperplanes [¶]
- Combinations of Families and Committees

¹⁴G. R. Blakley, "Safeguarding cryptographic keys," in 1979 National Computer Conference: June 4–7, 1979, New York, New York (R. E. Merwin, J. T. Zanca, and M. Smith, eds.), vol. 48 of AFIPS Conference proceedings, (Montvale, NJ, USA), pp. 313–317, AFIPS Press, 1979 [5]

"N. Alon, Z. Galil, and M. Yung, "Dynamic re-sharing verifiable secret sharing against a mobile adversary," in Algorithms — ESA '95: Third Annual European Symposium, Corfu, Greece, September 25–27, 1995: proceedings (P. G. Spirakis, ed.), vol. 979 of Lecture Notes in Computer Science, (Berlin, Germany / Heideberg, Germany / London, UK / etc.), pp. 523–537, Springer-Verlag, 1995

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ●○ ○○	Deliverables	Related Work	Questions	
Approach	nes						

Single-Secret Sharing

LaGrange Interpolation [4]

Intersecting Hyperplanes [¶]

Combinations of Families and Committees ^{||}

¹G. R. Blakley, "Safeguarding cryptographic keys," in 1979 National Computer Conference: June 4–7, 1979, New York, New York (R. E. Merwin, J. T. Zanca, and M. Smith, eds.), vol. 48 of AFIPS Conference proceedings, (Montvale, NJ, USA), pp. 313–317, AFIPS Press, 1979 [5]

"N. Alon, Z. Galil, and M. Yung, "Dynamic re-sharing verifiable secret sharing against a mobile adversary," in Algorithms — ESA '95: Third Annual European Symposium, Corfu, Greece, September 25–27, 1995: proceedings (P. G. Spirakis, ed.), vol. 979 of Lecture Notes in Computer Science, (Berlin, Germany / Heideberg, Germany / London, UK / etc.), pp. 523–537, Springer-Verlag, 1995

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ●○ ○○	Deliverables	Related Work	Questions
Approach	nes					

Single-Secret Sharing

- LaGrange Interpolation [4]
- Intersecting Hyperplanes [¶]
- Combinations of Families and Committees |

^{II}G. R. Blakley, "Safeguarding cryptographic keys," in 1979 National Computer Conference: June 4–7, 1979, New York, New York (R. E. Merwin, J. T. Zanca, and M. Smith, eds.), vol. 48 of AFIPS Conference proceedings, (Montvale, NJ, USA), pp. 313–317, AFIPS Press, 1979 [5]

sharing against a mobile adversary," in Algorithms — ESA '95: Third Annual European Symposium, Corfu, Greece, September 25–27, 1995: proceedings (P. G. Spirakis, ed.), vol. 979 of Lecture Notes in Computer Science, (Berlin, Germany / Heidelberg, Germany / London, UK / etc.), pp. 523–537, Springer-Verlag, 1995

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ●○ ○○	Deliverables	Related Work	Questions
Approach	nes					

Single-Secret Sharing

- LaGrange Interpolation [4]
- Intersecting Hyperplanes [¶]
- Combinations of Families and Committees ||

[¶]G. R. Blakley, "Safeguarding cryptographic keys," in 1979 National Computer Conference: June 4–7, 1979, New York, New York (R. E. Merwin, J. T. Zanca, and M. Smith, eds.), vol. 48 of AFIPS Conference proceedings, (Montvale, NJ, USA), pp. 313–317, AFIPS Press, 1979 [5]

^{II}N. Alon, Z. Galil, and M. Yung, "Dynamic re-sharing verifiable secret sharing against a mobile adversary," in *Algorithms — ESA '95: Third Annual European Symposium, Corfu, Greece, September 25–27, 1995: proceedings* (P. G. Spirakis, ed.), vol. 979 of *Lecture Notes in Computer Science*, (Berlin, Germany / Heidelberg, Germany / London, UK / etc.), pp. 523–537, Springer-Verlag, 1995 [6]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ○● ○○	Deliverables	Related Work	Questions
Approach	nes					

Cryptographic Function Sharing

- Any k shareholders should be able to collectively compute f.
- Even after taking part in the computation of f on some inputs, no set of upto k – 1 shareholders should be able to compute f on other inputs [3].

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ○● ○○	Deliverables	Related Work	Questions
Approach	nes					

Any k shareholders should be able to collectively compute f.

■ Even after taking part in the computation of f on some inputs, no set of upto k − 1 shareholders should be able to compute f on other inputs [3].

Kamran Riaz Khan <krkhan@inspirated.com>

Approaches	Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ○● ○○	Deliverables	Related Work	Questions
	Approach	nes					

- Any k shareholders should be able to collectively compute f.
- Even after taking part in the computation of f on some inputs, no set of upto k − 1 shareholders should be able to compute f on other inputs [3].

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ○○ ●○	Deliverables	Related Work	Questions
Impleme	ntation					

RSA Sharing Protocols

A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, "How to share a function securely," in *Proceedings of the twenty-sixth annual ACM Symposium on the Theory of Computing: Montréal, Québec, Canada, May* 23–25, 1994 (ACM, ed.), (New York, NY 10036, USA), pp. 522–533, ACM Press, 1994. ACM order no. 508930 [7]

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals ○ ○○ ○●	Deliverables	Related Work	Questions
Impleme	ntation					

RSA Sharing Protocols

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, "Robust and efficient sharing of RSA functions," in Advances in cryptology, CRYPTO '96: 16th annual international cryptology conference, Santa Barbara, California, USA, August 18–22, 1996: proceedings (N. Koblitz, ed.), vol. 1109 of Lecture Notes in Computer Science, (Berlin, Germany / Heidelberg, Germany / London, UK / etc.), pp. 157–172, Springer-Verlag, 1996. Sponsored by the International Association for Cryptologic Research (IACR), in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department of the University of California at Santa Barbara (UCSB) [8]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement	Proposed Solution	Project Goals	Deliverables	Related Work	Questions
			0 00 00			

- ITTC Daemon
- Interface Library (libittc.so)
- OpenSSL Modifications
- lighttpd Modifications
- A production-ready combination of function sharing threshold cryptographic Certificate Authority and Web Server

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions

ITTC Daemon

- Interface Library (libittc.so)
- OpenSSL Modifications
- lighttpd Modifications
- A production-ready combination of function sharing threshold cryptographic Certificate Authority and Web Server

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions

ITTC Daemon

Interface Library (libittc.so)

- OpenSSL Modifications
- lighttpd Modifications
- A production-ready combination of function sharing threshold cryptographic Certificate Authority and Web Server

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions

ITTC Daemon

- Interface Library (libittc.so)
- OpenSSL Modifications
- lighttpd Modifications
- A production-ready combination of function sharing threshold cryptographic Certificate Authority and Web Server

Outline	Problem Statement 000000 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions

- ITTC Daemon
- Interface Library (libittc.so)
- OpenSSL Modifications
- lighttpd Modifications
- A production-ready combination of function sharing threshold cryptographic Certificate Authority and Web Server

Outline	Problem Statement 000000 0 0	Proposed Solution 00000	Project Goals o oo oo	Deliverables	Related Work	Questions	

- ITTC Daemon
- Interface Library (libittc.so)
- OpenSSL Modifications
- lighttpd Modifications
- A production-ready combination of function sharing threshold cryptographic Certificate Authority and Web Server

Outline	Problem Statement 000000 0	Proposed Solution 00000		Deliverables	Related Work	Questions
			00			

Wu, Malkin and Boneh's Implementation **

SSLeay Modifications

Apache Modifications

**T. Wu, M. Malkin, and D. Boneh, "Building intrusion tolerant applications," in *Proceedings of the 8th conference on USENIX Security Symposium*, (Berkeley, CA, USA), pp. 7–7, USENIX Association, 1999 [9]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000	Proposed Solution 00000	Project Goals 0 00	Deliverables	Related Work	Questions	
			00				

Wu, Malkin and Boneh's Implementation **

SSLeay Modifications

Apache Modifications

**T. Wu, M. Malkin, and D. Boneh, "Building intrusion tolerant applications," in *Proceedings of the 8th conference on USENIX Security Symposium*, (Berkeley, CA, USA), pp. 7–7, USENIX Association, 1999 [9]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000	Proposed Solution 00000	Project Goals 0 00	Deliverables	Related Work	Questions	
			00				

Wu, Malkin and Boneh's Implementation **

- SSLeay Modifications
- Apache Modifications

**T. Wu, M. Malkin, and D. Boneh, "Building intrusion tolerant applications," in *Proceedings of the 8th conference on USENIX Security Symposium*, (Berkeley, CA, USA), pp. 7–7, USENIX Association, 1999 [9]

Kamran Riaz Khan <krkhan@inspirated.com>

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	References	Questions

Bibliography I

- [1] N. Ferguson and B. Schneier, *Practical Cryptography*. New York, NY, USA: John Wiley & Sons, Inc., 2003.
- [2] C. C. Mann, "Homeland insecurity," *The Atlantic Monthly*, vol. 290, pp. 81–102, September 2002.
- [3] P. S. Gemmell, "An introduction to threshold cryptography," *CryptoBytes*, vol. 2, pp. 7–12, Winter 1997.
- [4] A. Shamir, "How to share a secret," Communications of the Association for Computing Machinery, vol. 22, pp. 612–613, Nov. 1979.

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	References	Questions

Bibliography II

- [5] G. R. Blakley, "Safeguarding cryptographic keys," in 1979 National Computer Conference: June 4–7, 1979, New York, New York (R. E. Merwin, J. T. Zanca, and M. Smith, eds.), vol. 48 of AFIPS Conference proceedings, (Montvale, NJ, USA), pp. 313–317, AFIPS Press, 1979.
- [6] N. Alon, Z. Galil, and M. Yung, "Dynamic re-sharing verifiable secret sharing against a mobile adversary," in *Algorithms — ESA '95: Third Annual European Symposium, Corfu, Greece, September 25–27, 1995: proceedings* (P. G. Spirakis, ed.), vol. 979 of *Lecture Notes in Computer Science,* (Berlin, Germany / Heidelberg, Germany / London, UK / etc.), pp. 523–537, Springer-Verlag, 1995.

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	References	Questions

Bibliography III

- [7] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, "How to share a function securely," in *Proceedings of the twenty-sixth annual ACM Symposium on the Theory of Computing: Montréal, Québec, Canada, May* 23–25, 1994 (ACM, ed.), (New York, NY 10036, USA), pp. 522–533, ACM Press, 1994. ACM order no. 508930.
- [8] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, "Robust and efficient sharing of RSA functions," in Advances in cryptology, CRYPTO '96: 16th annual international cryptology conference, Santa Barbara, California, USA, August 18–22, 1996: proceedings (N. Koblitz, ed.), vol. 1109 of Lecture Notes in Computer Science, (Berlin, Germany / Heidelberg,

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	References	Questions

Bibliography IV

Germany / London, UK / etc.), pp. 157–172, Springer-Verlag, 1996. Sponsored by the International Association for Cryptologic Research (IACR), in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department of the University of California at Santa Barbara (UCSB).

[9] T. Wu, M. Malkin, and D. Boneh, "Building intrusion tolerant applications," in *Proceedings of the 8th conference on* USENIX Security Symposium, (Berkeley, CA, USA), pp. 7–7, USENIX Association, 1999.

Outline	Problem Statement 000000 0 0	Proposed Solution	Project Goals o oo oo	Deliverables	Related Work	Questions

Questions are never indiscreet: answers sometimes are. (Oscar Wilde)

Kamran Riaz Khan <krkhan@inspirated.com> An Intrusion Tolerant Threshold Cryptographic System